
Pittawat Taveekitworachai (Pete)

Developing Software for Human
Human-centered Design Codebase

25 April 2022

Pete
Pittawat Taveekitworachai

" ! Research Associate, Innovative Cognitive Computing Lab, School of
Information Technology, King Mongkut’s University of Technology, Thailand

" " Visitor, Intelligence Computer Entertainment Lab, Department of Human
and Computer Intelligence, Ritsumeikan University, Japan

" / Writer, PETEPITTAWAT.DEV

Developing Software $

=

Building a House %

Software House

Diagram Blueprint

Feature Room

Function Furniture

What’re the differences? &

A lot!

' ' ' ' ' ' ' ' ' '

Intangible (

VS

Tangible)

What’re the sameness? &

A lot!

' ' ' ' ' ' ' ' ' '

It’s a SOLUTION *

+ U S E R ,

+ U S E R ,

WE are also a user

User of our codebase

As a Developer

I N T R O D U C I N G

Human-Centered Design

- Knowledge -

Knowledge in Your Head .

Knowledge in The World /

Your Head .
Knowledge in

Fast

Hard at first, but

PRACTICED

Muscle

Memory

Invisible

The World /
Knowledge in

Interpreted

Easy to use, but need to

BE REMINDED

NO LEARNING

Required

Visible

The World /
Knowledge in Knowledge in

Your Head .

Goal

World

How do I (

do this?

What can (

I do?

What

happened?

Is this what (

I wanted?

D
IS

C
O

V
E

R
A

B
IL

IT
Y

E
x
e

c
u

ti
o

n

U
N

D
E

R
S

T
A

N
D

A
B

IL
IT

Y

E
v
a

lu
a

tio
n

Goal

World

D
IS

C
O

V
E

R
A

B
IL

IT
Y

F
e

e
d

fo
rw

a
rd

U
N

D
E

R
S

T
A

N
D

A
B

IL
IT

Y

F
e

e
d

b
a

c
k

Plan

Specify

Perform

Compare

Interpret

Perceive

Goal

World

Plan

Specify

Perform

Compare

Interpret

Perceive

What do you want to accomplish?

Goal

World

Plan

Specify

Perform

Compare

Interpret

Perceive

What are your options?

Goal

World

Plan

Specify

Perform

Compare

Interpret

Perceive

What action will you do?

Goal

World

Plan

Specify

Perform

Compare

Interpret

Perceive
How will you do it?

Goal

World

Plan

Specify

Perform

Compare

Interpret

Perceive What happened?

Goal

World

Plan

Specify

Perform

Compare

Interpret

Perceive

What does it mean?

Goal

World

Plan

Specify

Perform

Compare

Interpret

Perceive

Is this OK?

Goal

World

D
IS

C
O

V
E

R
A

B
IL

IT
Y

F
e

e
d

fo
rw

a
rd

U
N

D
E

R
S

T
A

N
D

A
B

IL
IT

Y

F
e

e
d

b
a

c
k

Plan

Specify

Perform

Compare

Interpret

Perceive

Affordances

Signifiers

Constraints

Mappings

Feedback

Conceptual

Models

Sticking out

Sticking out

Seems grab-able

Sticking out

Seems grab-able

One side is attached to the wall

Sticking out

Seems grab-able

One side is attached to the wall

These are affordances!

Goal

World

Plan

Specify

Perform

Compare

Interpret

Perceive
How will you do it?

Affordances

Double door!

Double door!

Dumbledore

PULLPULL

PULLPULL

These are
signifiers!

Goal

World

Plan

Specify

Perform

Compare

Interpret

Perceive

What are your options?

Signifiers

Physical Constraints

Semantic Constraints

Cultural Constraints

Logical Constraints

“When you have eliminated all which is

impossible, then whatever remains,

however improbable, must be the truth.”

Sir Arthur Conan Doyle

Goal

World

Plan
Compare

Interpret

Perceive
Perform

Specify

Constraints

What are your options?

What action will you do?

How will you do it?

&&

&
&

Bad Mapping

Good Mapping

Grouping in

the same way

Good

proximity

Grouping in

the same way

Goal

World

Plan

Specify

Perform

Compare

Interpret

Perceive

What action will you do?

Mappings

Goal

World

Plan

Specify

Perform

Compare

Interpret

Perceive

Mistakes

Slips

Goal

World

Plan

Specify

Perform

Compare

Perceive What happened?

Interpret What does it mean?

Feedback

Goal

World

Plan

Specify

Perform

Compare

Interpret

Perceive

Is this OK?

Conceptual

Models

I N T R O D U C I N G

Human-Centered Design
F O R DEVELOPERS

Organizing Things
An Introduction to A Good Project Structure

What did you usually do? 0

Like this?

Day 0

.
├%% index.ts

├%% LICENSE

5%% README.md

Like this?

Day 1

.
├%% index.ts

├%% Register

' ├%% RegisterForm.tsx

' 5%% RegisterForm.css
├%% LICENSE

5%% README.md

Like this?

Day 2

.
├%% index.ts

├%% Register

' ├%% RegisterForm.tsx

' 5%% RegisterForm.css
├%% hooks

' 5%% useComplexAuth.ts
├%% LICENSE

5%% README.md

Just Let It Evolve Over Time! ó

WAIT! Because Now I know MVC

Day 0

.
├%% index.ts

├%% models/

├%% views/

├%% controllers/

├%% LICENSE

5%% README.md

Day 30+.
├%% index.ts

├%% models/

' ├%% UserModel.ts

' ├%% ShopModel.ts

' ├%% CartModel.ts

' 5%% ...
├%% views/

' ├%% RegisterForm/

' ' ├%% RegisterForm.tsx

' ' 5%% RegisterForm.css
' ├%% Shop/

' ├%% Cart/

' 5%% ...
├%% controllers/

' 5%% ...
├%% LICENSE

What If You Need to (
Add "Search 1" Feature?

Day 31+
.
├%% index.ts

├%% models/

' ├%% SearchRequestModel.ts

' ├%% SearchResultModel.ts

' 5%% ...
├%% views/

' ├%% Search/

' ' ├%% SearchForm.tsx

' ' ├%% SearchResultItem.tsx

' ' ├%% SearchResultList.tsx

' ' 5%% ...
' 5%% ...
├%% controllers/

' 5%% ...
├%% LICENSE

5%% README.md

WAIT! I have Better Idea!

Let’s Divide It By Domain!

Day 0
.
├%% index.ts

├%% Customer/

' ├%% CustomerModel.ts

' ├%% CustomerRegisterForm.tsx

' ├%% CustomerLoginForm.tsx

' ├%% useCustomerAuth.ts

' 5%% ...
├%% ShopOwner/

├%% Product/

├%% Cart/

├%% ...

├%% LICENSE

5%% README.md

Great! No Problems Now *

Let’s Implement (
"Product Recommendation! 2"

Day 0
.
├%% index.ts

├%% Customer/

' ├%% CustomerModel.ts

' ├%% CustomerRegisterForm.tsx

' ├%% CustomerLoginForm.tsx

' ├%% useCustomerAuth.ts

' 5%% ...
├%% ShopOwner/

├%% Product/

├%% Cart/

├%% ...

├%% LICENSE

5%% README.md

Product Recommendation
Need All of These

Where should We Put (
"Product Recommendation"? &

I N T R O D U C I N G

Feature-driven Project Structure

Features

=

Use Cases

Presentation

Container

Interaction

Transport

Persistence

Search Product Recommendation Register

If something is used by (
multiple features? &

It belongs to a "shared ♽" folder!

.
├%% modules/

' ├%% domain1/

' ' ├%% useCases/

' ' ' ├%% useCase1/

' ' ' ├%% useCase2/

' ' ' ' ├%% useCase2UseCase.ts

' ' ' ' ├%% useCase2Errors.ts

' ' ' ' ├%% useCase2Controllers.ts

' ' ' ' 5%% ...
' ' ' 5%% ...
' ' 5%% ...
' 5%% ...
├%% shared/

' ├%% core/

' ├%% infra/

' 5%% utils/
├%% LICENSE

5%% README.md

“Software architectures are

structures that support the use

cases of the system. Just as the

plans for a house or a library

scream about the use cases of

those buildings, so should the

architecture of a software

application scream about the

use cases of the application”

Robert C. Martin

Documentation & Repositories
One of Ways to Manage Complexity

Documentation Should Answer These Questions

What is this?

How Do I Get Started?

What is it for?

How Do I Run Test?

How Do I Debug It?

Where Are The Features?

Documentation Should Answer These Questions

What is this?

How Do I Get Started?

What is it for?

How Do I Run Test?

How Do I Debug It?

Where Are The Features?

e.g. It’s a shopping front-end application

Documentation Should Answer These Questions

What is this?

How Do I Get Started?

What is it for?

How Do I Run Test?

How Do I Debug It?

Where Are The Features?

e.g. It’s a shopping front-end application

e.g. Landing page front-end service

Documentation Should Answer These Questions

What is this?

How Do I Get Started?

What is it for?

How Do I Run Test?

How Do I Debug It?

Where Are The Features?

e.g. It’s a shopping front-end application

e.g. Landing page front-end service

e.g. Step 1 …

Documentation Should Answer These Questions

What is this?

How Do I Get Started?

What is it for?

How Do I Run Test?

How Do I Debug It?

Where Are The Features?

e.g. It’s a shopping front-end application

e.g. Landing page front-end service

e.g. Step 1 …

e.g. Use command …

Documentation Should Answer These Questions

What is this?

How Do I Get Started?

What is it for?

How Do I Run Test?

How Do I Debug It?

Where Are The Features?

e.g. It’s a shopping front-end application

e.g. Landing page front-end service

e.g. Step 1 …

e.g. Use command …

e.g. Use command …

Documentation Should Answer These Questions

What is this?

How Do I Get Started?

What is it for?

How Do I Run Test?

How Do I Debug It?

Where Are The Features?

e.g. It’s a shopping front-end application

e.g. Landing page front-end service

e.g. Step 1 …

e.g. Use command …

e.g. Use command …

Your Project Structure Should Scream It!

What If I Have A Question

"How something works"? &

"Tests" Should Answer It!

"Tests" As Documentation 3

Naming Things
One of the Hardest Problems in Computer Science

Principle #1 Consistency & Uniqueness

Each concept should be represented

by a single, unique name

Principle #2 Understandability

A name should describe the (

concept it represents

Principle #3 Specificity

A name shouldn’t be (

overly vague or overly specific

Principle #4 Brevity

A name should be neither (

overly short nor overly long

Principle #5 Searchability

A name should be easily found

across code, documentation, (

and other resources

Principle #6 Pronounceabiltiy

A name should be easy to (

use in common speech

Principle #7 Austerity

A name should not be clever or rely

on temporary concepts

More Info

https://www.namingthings.co

https://www.namingthings.co

Comments
Is It A Grave Sin to Use Comments?

Code should explain (

What 4 and How 5,

Comment should explain Why 6

BUT, this code really need to be

explained in comment because it is

hard to understand 7!

There’s a chance that refactoring 8

your code could help!

Formattings & Styles
We Shouldn’t Do It Like A Fashionista

Coding

=

Storytelling

What are things (
they have in common? &

Good Visual
Appearance

Rule #1 (
Be Consistence

Rule #2 (
Use Proper Whitespace

Flow Naturally

Rule #3
Logically Order Code

Give Overview,
then Dive Deeper

Rule #4
Maintain Level of Abstraction

Bite-sized
Information

Rule #5
Keep File Small

Adapt to a Culture

Rule #6
Follow Language Convention

Types
One of Your Best Friends

Use Statically-typed Languages

Statically-typed

L A N G U A G E S

Prevent Silly (
MISTAKES

Make Implicit

EXPLICIT

ABSTRACTION

Techniques

Enforce

POLICY

Communicate
DESIGN INTENT SCALE WELL

Errors & Exceptions
Another One of Your Best Friends

What did you usually do? 0

Like this?

const findUser = (userId: UserID) => {
// DB query and conversion code
// goes here

if (!result.found) {
return null

}

return user
}

Or this?

const findUser = (userId: UserID) => {
// DB query and conversion code
// goes here

if (!result.found) {
console.error("User not found")
throw new Error(`User with user id: ${userId} not found`)

}

return user
}

Before Answer This Question

“What should We Do?”…

How the "Exception ¦" is (

Different From "Error o"? &

Error o Exception ¦

Expected Unexpected

Is a Part of a Domain Outside of Our Control

Essential Complexity Accidental Complexity

Error o Exception ¦

UserAlreadyExisted Database Server is Down

InvalidEmail 3rd Party API Server is Down

WrongPassword 3rd Party API Sent Only 500(

Response

Error o Exception ¦

Model Error As "Types" Surround It With try/catch

Key Takeaways

Develop for Users Develop for Human Not tolerate (

messy code

More Like This

Clean Code

by Robert C. Martin

Clean Architecture

by Robert C. Martin

The Design of Everyday Things

by Don Norman

"Programs must be written (

for people to read, (

and only incidentally for (

machines to execute."

Harold Abelson

148

