’ v
d
-
»
¥
.
¢ ’
.-t
J
s B
y -
, -
o !
”» o >
=
>
AT e Y
o
o . !
'E(';' AR f
ol s
o A
*
I‘ 4
-
s 4
AT 4
A
’
YA
o~
v
,’ -' -
rre v -
, “‘\
'
> .
4
S L

— gyt v

Pete

Pittawat Taveekitworachai

& Research Associate, Innovative Cognitive Computing Lab, School of
Information Technology, King Mongkut’s University of Technology, Thailand

» @ Visitor, Intelligence Computer Entertainment Lab, Department of Human
and Computer Intelligence, Ritsumeikan University, Japan

o @ Writer, PETEPITTAWAT.DEV

Developing Software

Building a House @&

—_—

Diagram

Function

What’re the differences? @

Intangible £

VS

Tang|b|e A

What’re the sameness? @

It's a SOLUTION &/

WE are also a user

User of our codebase

As a Developer

I'NTRODUGING

Human-Centered Design

?® Knowledge ¢

Knowledge in Your Head =

Knowledge in The World ®

Fast

Knowledge In
Your Head ®

Hard at first, but
PRACTICED

Invisible

NO LEARNING

Required

Interpreted

Knowledge In

The World ®

Easy to use, but need to

BE REMINDED

Knowledge In Knowledge In

The World * Your Head ™

DISCOVERABILITY

Execution

-

_

How do |
do this?

What can
| do?

~

W

4)

What
happened?

s this what
| wanted?

_ W

uoljen|en
ALI'TIAVANVLSHAANN

DISCOVERABILITY

Feedforward

}oBqpa9-
ALITIVANVLSddAdNN

What do you want to accomplish?

C i

Plan) (Compare)
(Spemfy) (Interpret)

(Perform)
(“ercame)
v |

What are your options? ¢
CCompare

C Specn‘y)
C Interpret)

¢ o)
gpeme.ve)
v |

Lt
C Plan) CComIpareD

C Interpret)
C Perform) I
C Perceive)

' |

What action will you do?

—
(Plan) (Compare)
(Specn‘y) (Interpret)

(Percelve)
|

How will you do it?

E——

C Plan) (Compare)
(Speon‘y) (Interpret)
(Perform)

|

Perceive What happened?

What does it mean?

(Perform) |
(Perceive)
}

PI
(-) Compare Is this OK?

(Specnfy)
(Interpret)

(S)
c S)
v |

DISCOVERABILITY
Feedforward

}oBqpa9-
ALITIVANVLSddAdNN

——

Sticking out

CURBISRNIIRIEI RNy

Sticking out

Seems grab-able

NULLILLTIRE TR I LD T L

Sticking out
Seems grab-able

One side Is attached to the wall

CUNNIBRN IRIRIIERINEY"

, These are affordances!

'\ * Sticking out

\ ‘ S eems g ra b -d b I e

*“ One side is attached to the wall

How will you do it?

(Perceive)
|

Lo AN SN R
: I\ \1)-\»‘\‘-!
\‘ A i‘ i v :\!_'-1..

-

-

-
-
-

.

. #

———
’
: -".' -

A

—
‘o R
> =

i =

Double door!

Dumbledore

Lo AN SN R
: I\ \1)-\»‘\‘-!
\‘ A i‘ i v :\!_'-1..

-

-

-
-
-

.

. #

———
’
: -".' -

A

—
‘o R
> =

i =

L) b A AT
»‘\“;l] N
R

T

:

-
-

——

‘e

-
VA

L) b A AT
»‘\“;l] N
R

T

:

-
-

——

‘e

-
VA

T

(Compare)
C Specn‘y) (Interpret)

What are your options?

(o)
(oo)
v |

- T rs
e S R SR AT

o

"Murder in warchous.
The body was found in wrecknge

“When you have eliminated all which is
Impossible, then whatever remains,
however improbable, must be the truth.”

\ Sir Arthur Conan Doyle

What are your options?

What action will you do?

How will you do it?

. ‘o
5)
{ N"{

...._..‘.,.-.--o T

S
(4

| s w0 Ve Y, &SN EN R

Groupin
the same

<

Groupin
the same

Good
pProxi

1 '

- C Plan) (ComTpare)

What action will you do?
(Interpret)

(“perform)
(“Perceive)
! |

Mistakes ! (__Plan)

B
T G

| Interpret What does it mean?

(Perform)

|

Perceive What happened?

PI
(-) Compare Is this OK?

(Specn‘y) (Interpret)

c o)
(peme.ve)
v |

I'NTRODUGING

Human-Centered Design

OR DEVELOPERS

Organizing Things

An Introduction to A Good Project Structure

ot

What did you usually do? ,

DEVAN

Index.ts
LICENSE
README.md

| Ike this?

Day 1

iIndex.ts

Register

| Ike this?

RegisterForm.tsx

RegisterForm.css
LICENSE

README.md

Day 2

| iIndex.ts

Register

RegisterForm.tsx

| Ike this?

RegqisterForm.css
hooks

useComplexAuth.ts
LICENSE

README.md

Just Let It Evolve Over Time!

WAIT! Because Now | know MVC

DEVAN

Index.ts

models/

views/

controllers/

LICENSE

README.md

Day 30+

Index.ts

models/

UserModel.ts

ShopModel.ts

CartModel.ts

views/

RegisterForm/

RegisterForm.tsx

RegisterForm.css

Shop/

Cart/

controllers/

LICENSE

What If You Need to
Add "Search .®" Feature?

Day 31+

Index.ts

models/

SearchRequestModel.ts

SearchResultModel.ts

views/

Search/

SearchForm.tsx

SearchResultltem.tsx

SearchResultList.tsx

controllers/

LICENSE
README.md

WAIT! | have Better laea!

Let’s Divide It By Domain!

DEVAN

Index.ts

Customer/

CustomerModel.ts

CustomerRegisterForm.tsx

CustomerLoginForm.tsx

useCustomerAuth.ts

ShopOwner/
Product/
Cart/

LICENSE
README.md

Great! No Problems Now &

| et’s Implement
"Product Recommendation! "

DEVAN

Productk Recommendation

Index.ts

Customer/

Custo

Need ALl of These

7l \A 6'3. |.ts

CustomerRegisterForm.tsx

CustomerLoginForm.tsx

useCustomerAuth.ts

ShopOwner/ =" _.

LICENSE
README.md

Where should We Put
"Product Recommendation"? &

I'NTRODUGING

Feature-driven Project Structure

Features

Use Cases

Presentation
Container
Interaction
Transport

Persistence

Search

Product Recommendation

Register

If something Is used by
multiple features?

[t belongs to a "shared 3" folder!

modules/

| domaini/
useCases/
useCase1l/
useCase2/
useCase2UseCase.ts
useCase2Errors.ts
useCase2Controllers.ts
shar.é.d/
core/
infra/
utils/
LICENSE

README.md

“Software architectures are
structures that support the use
cases of the system. Just as the
plans for a house or a library
scream about the use cases of
those buildings, so should the
architecture of a software
application scream about the
use cases of the application”

Robert C. Martin

Documentation & Repositories
One of Ways to Manage Complexity

Documentation Should Answer These Questions

What is this?
What is it for?
How Do | Get Started?
How Do | Run Test?
How Do | Debug It?

Where Are The Features?

Documentation Should Answer These Questions

What is this?
What is it for?
How Do | Get Started?
How Do | Run Test?
How Do | Debug It?

Where Are The Features?

Documentation Should Answer These Questions

What is this?
What is it for?
How Do | Get Started?
How Do | Run Test?
How Do | Debug It?

Where Are The Features?

Documentation Should Answer These Questions

What is this?
What is it for?
How Do | Get Started?
How Do | Run Test?
How Do | Debug It?

Where Are The Features?

Documentation Should Answer These Questions

What is this?
What is it for?
How Do | Get Started?
How Do | Run Test?
How Do | Debug It?

Where Are The Features?

Documentation Should Answer These Questions

What is this?
What is it for?
How Do | Get Started?
How Do | Run Test?
How Do | Debug It?

Where Are The Features?

Documentation Should Answer These Questions

What is this? <.q. ItS a shopping front-end application

front-end service

What is it for? c.q. Landing page
How Do | Get Started? <.q. Step 1 ...
2.q. Use command ... How Do I Run Test?
2.q. Use command ... How Do | Debug It?

Your ‘Pro\}e&% Skruckure Should Sereavwn IE! Where Are The Features?

What If | Have A Question
"How something works"”? @&

"Tests" Should Answer lt!

- n "_:
ntatio
" As Docume
"Tests

Naming Things

One of the Hardest Problems in Computer Science

Principle #1 Consistency & Uniqueness

Each concept should be represented
by a single, unigue name

Principle #2 Understandability

A name should describe the
concept it represents

Principle #3 Specificity

A name shouldn’t be
overly vague or overly specific

Principle #4 Brevity

A name should be neither
overly short nor overly long

Principle #5 Searchability

A name should be easily found
across code, documentation,
and other resources

Principle #6 Pronounceabiltly

A name should be easy to
use In common speech

Principle #7 Austerity

A name should not be clever or rely
on temporary concepts

More Info

https://www.namingthings.co

https://www.namingthings.co

Comments

Is It A Grave Sin to Use Comments?

Code should explain
What % and How ¥,

Comment should explain Why &

BUT, this code really need to be
explained in comment because It IS

hard to understand ®!

There’s a chance that refactoring %
your code could help!

Formattings & Styles
We Shouldn’t Do It Like A Fashionista

Storytelling

What are things
they have in common? @

S
>

R

oy
=

(SRR
3{ ‘iﬁ AT

Types

One of Your Best Friends

Use Statically-typed Languages

Prevent Silly ABSTRACTION
MISTAKES Techniques

Enforce
POLICY

Statically-typed Make Implicit

ancuaces EXPLICIT

Communicate
DESIGN INTENT

SCALE WELL

Errors & Exceptions

Another One of Your Best Friends

ot

What did you usually do? ,

| Ike this?

const findUser = (userld: UserlD) => {
// DB query and conversion code
// goes here

It (‘result.found) {
return null

;

return user

;

Or this?

const findUser = (userld: UserlD) => {
// DB gquery and conversion code
// goes here

If ('result.found) {
console.error("User not found")
throw new Error("User with user id: ${userld} not found)

;

return user

;

Before Answer This Question
“What should We Do?”...

How the "Exception A" is
Different From "Error .~ "? @

Error

Exception A

Expected Unexpected
s a Part of a Domain Outside of Our Control

Essential Complexity Accidental Complexity

Error

Exception A

UserAlreadyExisted Database Server is Down
InvalidEmaill 3rd Party API Server is Down
WrongPassword 3rd Party APl Sent Only 500

Response

Exception A

Model Error As "Types"” Surround It With try/catch

Key Takeaways

| 4 %
e - | oy

Develop for Users Develop for Human Not tolerate
messy code

More Like This

Robert C. Martin Series ‘ W

Clean Code

A Handbook of Agile Software Craftsmanship

Robert C. Martin

P Foreword by James O. Coplien

Clean Code
by Robert C. Martin

REVISED & EXPANDED EDITION

The DESIGN
of EVERY DAY
THINGS

NORMAN

The Design of Everyday Things
by Don Norman

v

Robert C. Martin Series ‘

Clean Architecture

A Craftsman’s Guide to-
Software Structure and Design

Robert C. Martin

WA contributions by James Grenning e Simon Brown

Forewond by Xoviin Henney

@ Arerword by Jason Gorman

Clean Architecture
by Robert C. Martin

"Programs must be written
for people to read,
and only incidentally for

machines to execute."

|
r‘ a.
o
W
,‘ ANR Y
o\ BN
By y O
e ..\ .
-
‘ -« I8
T B
'. "
AL
g 4 N
« 1%

(a
.

Harold Abelson

